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Ill 

PREFACE 

This draft is a preliminary version of a report on the construction 

of an updated set of Function Independence Measure-Function Related 

Groups (FIM-FRGs, or just FRGs).  It was written for a project in 

support of the Health Care Financing Administration's (HCFA) design, 

development, implementation, monitoring, and refining of a Prospective 

Payment System (PPS) for inpatient rehabilitation.  Such an inpatient 

rehabilitation facility PPS (IRF PPS) was mandated in the Balanced 

Budget Act of 1997.  This report is being circulated in this form in 

order to obtain comments from a technical expert panel.  After comments 

have been received, the report will be revised and made publicly 

available. 

The research reported here was supported by HCFA through contract 

500-95-0056 with RAND. 
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EXECUTIVE SUMMARY 

In the Balanced Budget Act of 1997, Congress mandated that the 

Health Care Financing Administration (HCFA) implement a Prospective 

Payment System (PPS) for inpatient rehabilitation.  RAND contracted with 

HCFA to carry out the research, and recruited a Technical Expert Panel 

(TEP) to advise on issues related to the design and development of such 

a PPS.  The TEP convened in May 2000 to review our Interim Report.  A 

key topic discussed there was the construction of Function Related 

Groups (FRGs), which will be the basis of the payment classification 

system.  This report follows up the TEP suggestions, both formal and 

informal, for further research into FRGs. 

In the interim report, we used CART to obtain candidate FRGs.  The 

TEP asked for a broader context within which to view the results. 

Specifically, the TEP wanted us to 

(1) Explore alternative model forms.  Develop models to compete with 

CART in terms of having strong predictive performance. 

(2) Consider indices of function in addition to the cognitive and 

motor scores. Payment formulas based on these measures might 

offer better estimates of cost. 

(3) Evaluate out-of-sample performance of the models.  An important 

element of a payment system is whether payment formulas 

developed from data in one year apply in future years. 

In this report, we describe the steps we have taken to update FRGs 

on newer data while incorporating the above suggestions. 

Data 

We used hospital cost reports, discharge abstracts from MEDPAR, and 

functional independence measure (FIM) data for Medicare discharges in 

years 1996 through 1999. We added 1998 and 1999 data to our database 

since the TEP meeting. We use the departmental method to estimate the 

accounting cost of each case in the MEDPAR sample. The FIM data come 

from the Uniform Data System for medical rehabilitation (UDSmr), from 

the Clinical Outcomes Systems (COS) data for medical rehabilitation 



(1996 and 1997), and from Health South Rehabilitation Hospitals (1998 

and 1999).  Our sample covers about half of all inpatient rehabilitation 

facility Medicare patients in the first two years, but 70 percent of 

this population by 1999. 

Modeling Methods 

We identify the three basic suggestions of the TEP and describe a 

computational experiment to carry them out, leading to the 

identification of specific methods for determining and evaluating FRGs. 

The computational experiment varied six types of models over six types 

of indices over four years of data.  The dependent variable in all the 

models was the logarithm of wage adjusted cost. 

(1) Explore alternative model forms.  CART is the traditional method 

of generating FRGs and a reasonable method for determining rules 

to classify patients into groups that explain cost.  CART is 

efficient at producing simple and effective rules for 

prediction, but it also has its limitations.  In particular, it 

adheres to a particular functional form, and its fitting 

algorithm does not necessarily produce a global optimum.  So we 

compared its performance with other methods that are known in 

the statistics literature: ordinary linear least squares (OLS), 

generalized additive models (GAM), and multiple adaptive 

regression trees (MART).  These were in addition to three 

variations of CART that differed in their stopping rules.  To 

determine which models fit best, we assessed each model's out- 

of-sample predictive performance.  Our goal was to determine 

what percent of the "predictable" variation in costs CART could 

predict. 

(2) Explore the predictive ability of other functional measures. 

The 13-item FIM motor scale and the five-item FIM cognitive 

scale are well-established measures of motor and cognitive 

ability.  We examined individual FIM items to see if each one 

entered in the expected direction--if not, it would suggest 

problems with their presence in the scale and we would consider 

removing them.  We also experimented with several of the sub- 



scales described in Stineman, Jette, et al. (1997).  These split 

out the standard motor index into dimensions that pertain to 

different body areas and types of function. 

(3) Examine the stability of predictions across years.  Our previous 

results were based on 1996 and 1997 data, and did not give us 

much latitude for examining stability over time.  With the 

addition of 1998 and 1999 data, we have the option of fitting 

models within each year and seeing how well they do on other 

years.  We also have the ability to pool multiple years worth of 

data for RICs that are small and hence have imprecise estimates 

of cost.  Table S.l illustrates the combinations of fitting and 

evaluation years that we used. 

Table S.l 

Combination of Fitting and Evaluation Periods Examined 

Evaluation Period 
Fitting Period 1996 1997 1998 1999 
1996 X X X 

1997 X X X 

1998 X X X 

1999 X X X . 

1996-97 . . X X 

1998-99 X X . . 

Results--Item Level Analysis 

We regressed log cost (OLS and GAM) on the responses to individual 

FIM items--eating, walking, etc.  We wanted to know whether the 

individual items appeared to influence costs in the expected direction: 

higher FIM scores should mean lower costs, so coefficients should be 

negative.  Randomness alone would produce numerous positive regression 

coefficients, so we looked for items with consistently positive 

coefficients across all four years of data and many RICs.  The 

unmistakable pattern is that both tub transfers and comprehension often 

have the wrong sign in OLS (and GAM) regressions--costs were higher when 

the functional independence measure was higher. 

The response to the transfer to tub/shower depends on the situation 

being tested—whether tub or shower and whether an assistive device is 



used. Thus it does not provide a measure of the relative capability of 

different patients. We have no similar rationale for the comprehension 

results. 

Based on these results, we removed transfer to tub from all indices 

that included it, and we eliminated comprehension from the cognitive 

index in order to compare the resulting cost predictions with those from 

the standard motor and cognitive scores.  Table S.2 indicates the 

combinations of indices we selected for further investigation. 

Table S.2 

The Candidate Indices 

Items M13C5 M12C5 M12C4 StJe3 StJe5 

transfer to 
tub/shower 

standard 
motor 

X X X X 

transfer to 
bed/chair 

motor 
excluding 
trftub 

motor 
excluding 
trftub 

mobility 
excluding 
trftub 

transfer 
excluding 
trftub transfer to 

toilet 
Walking/ 
wheelchair locomotion 

stairs 
bladder 

ADLS 

sphincter 
bowel 
eating 

self care 

grooming 
bathing 
dress upper 
dress lower 
toilet 
comprehension 

standard 
cognitive 

standard 
cognitive 

X 

standard 
cognitive 

standard 
cognitive 

expression 

cognitive 
excluding 
compreh 

social 
interaction 
problem 
solving 
memory 
Note: transfer to tub has been a traditional component of all these 

mobility indices.  However, for reasons developed in Section 3.3.1, we 
take transfer to tub out of the relevant indices when the time comes to 
use them. 

Results--Selecting a Gold Standard Model 

A gold standard model can help us evaluate how well CART is doing- 

it gives us a measure of attainable residual standard deviation to 



compare to the residual standard deviation we get from CART.  It also 

will enable us in a later simulation exercise to assess the prediction 

bias for various combinations of demographic and hospital 

characteristics.  These simulations will be reported in the project's 

final report. 

MART and GAM are the candidates for gold standard status.  Both are 

extremely flexible and can trace out prediction formulas with arbitrary 

shapes--not just linear shapes (as in OLS), not just step function 

shapes (as in CART).  MART models allow interactions, GAM models are 

additive.  So, MART is more flexible, but GAM fits are generally easier 

to interpret.  Knowing that CART would not produce reasonable models 

with the individual FIM item scores, we chose not to work further with 

items at this point.  We used all of the five remaining index sets and 

each 6 fitting periods described in the previous tables.  We looked at 

out-of-sample root mean squared prediction error (RMSE) as a measure of 

quality of fits, both aggregated across RICs and disaggregated within 

RICs, and drew the following conclusions. 

(1) MART and GAM do about equally well. 

(2) The motor score without transfer to tub predicts costs slightly 

better than the standard motor score; eliminating comprehension 

from the cognitive score produces a further slight improvement 

in prediction accuracy in some cases. 

3)  Both GAM and MART seem to be able to make use of the sub-scales 

of the motor scale.  RMSE goes down as the number of sub-scales 

goes up, and the RMSE is lowest for the most disaggregated set 

of indices StJe5. 

(4) The RMSEs are all large, even for the best performing index set 

StJe5.  About 15 percent of the within-RIC standard deviation, 

or 25 percent of the variance, is explainable.  This translates 

to predicting about 3 8 percent of the total variance in cost, 

including the variance across RICs.  But we cannot do better 

than that--case level costs are inherently unpredictable. 

We decided to use MART with index set StJe5 as the gold standard. 

Prior to reviewing exactly which models to use within each RIC for our 

final report simulations, we assume that this model will provide a good 



estimate of the percent of the explainable standard deviation attained 

by our CART models. 

Results--Cost Patterns 

We wanted to understand the marginal contribution of motor and 

cognitive scores to the estimated log cost.  OLS coefficients provide 

such marginal estimates, but they enforce linear effects.  GAM provides 

marginal estimates and allows arbitrary curvature.  We attempted to 

understand the patterns of fit by graphing our GAM-M12C5 fits versus the 

motor and cognitive scales.  Because the GAM fits were almost as good as 

MART'S, we thought this would give an accurate portrayal of the cost 

versus scale relationships. 

We found that the patterns of variation are described by a strong 

relationship between motor and cost--higher motor scores lower cost, and 

a weak relationship between cognitive and cost.  The fitted curves do 

not appear to be far from monotone approximations that enforce an 

inverse relationship between cost and FIM scores.  This implies that the 

data will support a "monotone" payment scheme where higher FIM scores 

never lead to higher payments, perhaps a politically desirable 

situation. 

Results--Evaluating CART Models 

The design criteria of the payment system require developing 

simple, understandable patient classification groups.  CART is the ideal 

tool for building classification models.  We considered three basic 

variations of stopping rules: (1) XVAL--the standard cross-validation 

method, which stops when CART thinks the minimum prediction error is 

achieved; (2) lSD--the one standard deviation rule, which stops when 

CART thinks the prediction error is within one standard deviation of the 

minimum; and (3) INT--the number of nodes in the interim report (DRU- 

2309-HCFA, July 2000).  We use two basic criteria to evaluate the 

alternatives: RMSE and parsimony. 

In CART, the index with transfer to tub (M13C5) does noticeably 

worse than the index without this item in many years and stopping rules 

and never does substantially better.  This is similar to our findings 
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with GAM and MART.  The number of FRGs in the models is relatively 

similar. 

If we drop comprehension from the cognitive index, we get a further 

slightly better prediction in some years and stopping rules.  We discuss 

reasons in the text why one might want to include or exclude 

comprehension from the cognitive index, but we hope to get the TEP's 

input to help resolve this issue. 

At the same number of nodes, either of the models based on sub- 

scale have substantially worse performance than any version of the motor 

and cognitive scales.  With either the 1SD stopping rule or the XVAL 

rule, we get many more nodes.  For example, with 1SD-CART in 1999, we 

get 50 percent more nodes than with the motor and cognitive scales 

(M12C5), with almost no improvement in RMSE. 

We found that the CART 1 standard deviation rule produced fits that 

explained about 84 percent of the explainable standard deviation.  We 

also found that the CART 1 standard deviation rule produced less than 

half the nodes of the cross-validation rule. 

Results--Recommendations 

Our tentative recommendation to HCFA is to use the CART model with 

the motor score without the transfer to tub/shower item and with the 

lSD-stopping rule as the basis of the case mix groups.  We drop transfer 

to tub/shower because we believe this item does not measure an absolute 

level of function and slightly decreases our ability to predict cost. 

We use two years of data in several small RICs.  We are requesting CART 

input on several aspects of this recommendation. 

After deciding to develop FRGs through 1SD-CART models using the 

index M12C5, we enforced monotonicity in the motor and cognitive scale 

and joined adjacent nodes of a tree where the cost estimates were 

similar.  Our proposed model has 95 FRGs, with splits mostly on motor 

scores, but with age and cognitive scores playing a limited role.  Age 

matters only at low motor scores and, where age matters, younger 

patients are more expensive.  Cognitive function helps to define groups 

for patients with high motor scores in stroke, osteoarthritis, and in 

three of the brain injury, and spinal cord injury RICs, but splits 



patients with low motor score in the joint replacement RIC.  Lower 

cognitive cost predicts larger costs. 

Using the gold standard models, we can assess how well the 95-node 

model is doing in out-of-sample years: it explains about 80 percent of 

the explainable standard deviation (81 percent of the variance).  The 

payment system, of course, also exploits the variance across RICs in 

cost.  About 34 percent of the total variance in the wage adjusted cost 

of cases discharged to the community is predicted by the proposed FRG 

system (38 percent by our gold standard models). 

The final trees differ in some respects from the trees produced in 

the interim report.  This is not surprising--CART is trying to fit step 

functions to continuous curves, so the cut-points are imprecisely 

determined.  We think the important question is not whether the trees 

are identical but instead whether the tree models produce a consistent 

and accurate set of predictions.  For now, we simply ask if one used the 

current FRGs and associated predictions, how different are these 

predictions over the different years?  The plots in Section 4 

demonstrate that this set of FRG models fits the data pretty well in all 

years.  In future work, we will determine rules for updating the FRGs 

that result in fewer changes to the FRG definitions than would an annual 

refitting of the CART model. 
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1. INTRODUCTION 

This report to the Technical Expert Panel (TEP) follows up comments 

made at the TEP meeting in May 2000.  A presentation and discussion of 

FRGs at that meeting had brought forward three basic suggestions: 

(1) Explore alternative model forms.  Develop models to compete with 

CART in terms of having strong predictive performance.  CART is 

limited to a particular functional form and its fitting 

algorithm does not necessarily produce a global optimum. 

Comparison with other types of models will measure how much of 

the predictable variation CART is still able to capture. 

(2) Consider alternate indices.  The literature offers competing 

measures of cognitive and motor ability.  Payment formulas based 

on these measures may offer better estimates of cost. 

Furthermore, there is more data now than when the original motor 

and cognitive scales were developed.  With this additional data 

we can test the relative predictive strength of the various 

measures and consider their practical merits. 

(3) Evaluate out-of-sample performance of the models.  An important 

element of a payment system is whether payment formulas 

developed from data in one year apply in future years.  This is 

the critical measure of reliability of the derived payment 

system.  Extrapolation can also help to determine the necessary 

nature and frequency of adjustments to the payment formulas as 

the system evolves over time. 

Since the meetings, we have taken these steps and have updated our 

computations based on two years of additional data. 

This report begins with a description of the data, followed by a 

discussion of modeling methods and results (which covers the above three 

points), then a section on obtaining new FRGs.  An accompanying 

questionnaire seeks evaluation from the TEP on some tentative decisions 

we have made. 
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2. DATA 

2.1 DATASET CONSTRUCTION 

We used the merged MEDPAR/FIM data for calendar years 1996 through 

1999, which contain one record for each hospital discharge.  MEDPAR data 

describe all inpatient stays (including rehabilitation stays) paid for 

by Medicare.  FIM data describe the functional status of patients cared 

for in rehabilitation facilities.  Data set construction is documented 

for 1996 and 1997 in the project work plan (Carter, Relies, and Wynn, 

2000).  The same methods were applied for 1998 and 1999, and the results 

are discussed below.  Updated documentation for data set construction is 

forthcoming. 

Four data systems were the primary sources for the files: 

• Medicare program information--the Medicare data files include 

discharge files recording demographic, clinical, and financial 

information, and hospital-level files providing facility 

characteristics and financial information. 

• The Uniform Data System for medical rehabilitation (UDSmr). 

UDSmr provides functional status and demographic information for 

rehabilitation discharges from participating hospitals. 

• The Caredata Data System (COS) for medical rehabilitation (1996- 

1997) .  Caredata also records functional status and demographic 

information for rehabilitation discharges from participating 

hospitals. 

• HealthSouth Data. Caredata ceased to exist prior to our getting 

its 1998 and 1999 data, but we were able to obtain the data from 

its principal client, HealthSouth Corporation, for those years. 

Our earlier MEDPAR files covered calendar years 1996 and 1997 and 

contained about 350,000 rehabilitation records per year.  During 1996 

and 1997, between 40 and 50 percent of the MEDPAR rehabilitation 

hospitals participated in UDSmr or Caredata.  By 1999, the number of 

MEDPAR rehabilitation cases had grown to about 390,000, an 11 percent 

increase from 1996.  As new hospitals joined UDSmr and HealthSouth, our 



- 4 

FIM sample grew even faster (by 45 percent), and now covers about 62 

percent of the rehabilitation hospitals. 

We used probabilistic matching methods to link records from the 

Medicare Provider Analysis and Review (MEDPAR) and UDSmr/Caredata/ 

HealthSouth (FIM) files that described the same discharge.  Our merged 

file in 1996 matched about 55 percent of all MEDPAR rehabilitation 

cases.  Given the steady increase in the volume of FIM cases, we now 

match about 70 percent of all MEDPAR cases.  Our match rates remained 

about constant throughout.  We were able to find a MEDPAR record for 

about 95 percent of the FIM cases where Medicare was listed as the 

primary payer.  We matched about 90 percent of MEDPAR cases to FIM for 

hospitals that provided FIM data for an entire year. 

2.2 DATASET CONTENTS 

The merged MEDPAR/FIM data contained several variables we would 

need for modeling and classification.  Table 2.1 identifies these 

variables, and indicates at which stages of the process they were used. 



Table 2.1 

MEDPAR/FIM Variables and Stages of Use 

Purpose Variable Source Description 

Selection 
AGE MEDPAR age 
DISSTAY FIM discharqe stay indicator 

LOS MEDPAR lenqth of stay- 
IMPCD FIM rehabilitation impairment codes 
PROVCODE MEDPAR provider code 
PROVNO MEDPAR provider number 
TCOST MEDPAR total cost estimates, based on 

cost to charge ratios, adjusted 
by area wage index (*) 

Clinical 
partitioning 

IMPCD FIM impairment code 
RIC FIM clinical groupings resulting 

from impairment code mappings 

Resource use 
TCOST MEDPAR total cost estimates, based on 

cost to charge ratios, adjusted 
by area wage index (*) 

COGNITIVE FIM cognitive scores (**) 
comprehension 
expression 
social interaction 
problem solving 
memory 

MOTOR FIM motor scores (**) 
eatinq 
grooming 
bathinq 
dressing--upper body 
dressinq--lower body 
toileting 
bladder manaqement 
bowel manaqement 
bed, chair, wheelchair transfer 
toilet transfer 
tub or shower transfer 
walkinq or wheelchair 
stair ascendinq and descendinq 

AGE MEDPAR aqe 
(*) methods described in DRU-2161-1-HCFA, Section 7. 
(**) these individual components are orqanized into various types of 

indices, accordinq to body areas and types of impairment.  See Table 
3.1. 
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The selection variables define what we think of as the typical 

case.  We exclude transfers to hospitals and long term care settings, 

deaths, cases of three days or less duration, and statistical outliers. 

Also, the clinical partitioning and resource use variables needed to be 

present and in range.  Selection was based on the intersection of the 

rules shown in Table 2.2. 

Table 2.2 

Rules for Selection of Modeling Cases 

Variable Selection Requirement 

AGE between 16 and 105 
DISSTAY indicates discharged to the community 

LOS more than three days, less than one year. 
IMPCD, TCOST we excluded cases with wage-adjusted log- 

cost more than three standard deviations 
from its average within RIC 

PROVNO, PROVCODE 4-digit rehabilitation provider number 
between 3025 and 3099, or provider 
code = "T" 

IMPCD contained in impairment list for assignment 
to rehabilitation categories (see DRU-2309- 
HCFA, Table 3.9) 

TCOST, COGNITIVE, MOTOR greater than zero 

Table 2.3 shows the amount of data we had to work with, before and 

after selection, by FIM source.  Most of the reduction in cases is for 

ineligibility: deaths, interrupted stays, or transfers.  The last column 

indicates how many cases were kept with full information.  Overall, the 

reductions due to missing cost data and data quality (present and in- 

range, exclude cost outliers) are small: about 3 percent in 1996, 4 

percent in 1997, 2 percent in 1998, and 3 percent in 1999.  Fortunately, 

the additional reduction due to cost outliers is especially small—less 

than 0.3 percent everywhere--so we do not believe we are contaminating 

our results by the cost outlier exclusions. 



Table 2.3 

Number of Linked MEDPAR/FIM Records 

Calendar 
Year 

1996 
1997 
1998 
1999 

Source 

Total 
Total 
Total 
Total 

Initial 
Number of 
Records 
188889 
222682 
246450 
273548 

Rehabil- 
itation 
Facility 
171626 
206032 
232691 
257024 

Present and 
In-Range 

166645 
197076 
228248 
249941 

Eligible 

127595 
149350 
170266 
187257 

Exclude 
Cost 

Outliers 
127276 
148966 
169816 
186766 

Our numbers of 1996 and 1997 cases are slightly reduced from the 
numbers shown in the interim report, Table 3.2.  The reason is that in 
1996 and 1997 we were only working with the standard motor and cognitive 
indices, and had imputed their values from partial information if 
available.  Here, because we needed to work with individual components, 
and several alternative sub-scales, we eliminated all cases that were 
not complete on all components.  This reduced our 1996 counts by about 
300 and our 1997 counts by about 200 cases. 

2.3 CASE STRATIFICATION AND SAMPLE SIZES 

Previous work had established 21 clinical groupings of patients 

according to rehabilitation impairment codes (RICs) within which we 

would be fitting models.  Table 2.4 describes those groupings and the 

sample sizes available for the modeling effort according to the 

selection rules in Table 2.2. 



Table 2.4 

RIC Definitions and Sample Sizes 

Rehabilitation Impairment Category 1996 1997 1998 1999 
1  Stroke 33013 35387 37012 37340 
2  Traumatic brain injury 1401 1653 1871 2053 
3 Nontraumatic brain injury 2542 2874 3402 3758 
4  Traumatic spinal cord 743 812 930 953 
5 Nontraumatic spinal cord 3802 4356 5295 5837 
6  Neuroloqical 4755 5755 7832 8875 
7 Hip fracture 16171 17341 18774 20627 
8  Replacement of lower extremity 

joint 
31169 37418 40931 43427 

9 Other orthopedic 5310 6584 8022 9310 
10 Amputation, lower extremity 4823 5437 5930 6156 
11 Amputation, other 357 478 542 662 
12 Osteoarthritis 2347 2860 3983 5036 
13 Rheumatoid, other arthritis 1167 1527 1944 2350 
14 Cardiac 4107 5677 6885 8104 
15 Pulmonary 2451 3571 4340 5382 
16 Pain Syndrome 1328 1890 2529 2993 
17 MMT, no brain or spinal cord 

injury 
1192 1302 1540 1679 

18 MMT, with brain or spinal cord 
injury 

160 224 221 256 

19 Guillain-Barre 241 278 299 313 
2 0 Miscellaneous 10126 13442 17423 21553 
21 Burns 71 100 111 102 
Total                           1 127276 148966 169816 186766 



MODELING METHODS AND RESULTS 

We identify and discuss the three basic suggestions of the 

technical expert panel.  Then we present a computational experiment to 

examine their implications, leading to selection of specific methods for 

determining and evaluating FRGs.  The FRG selection itself is described 

in Section 4. 

3.1 SUGGESTIONS OF THE TECHNICAL EXPERT PANEL 

3.1.1 Explore Alternative Model Forms 

We expect that classification and regression trees (CART) will form 

the final determination of the FRGs.  According to the BBA Relief Act, 

the rehabilitation PPS system is to be based on discharges classified 

according to functional-related groups based on impairment, age, 

comorbidities, and functional capability of the patient as well as other 

factors deemed appropriate to improve the explanatory power of 

functional independence measure-function related groups.  CART is the 

traditional method of generating FRGs (Stineman et al., 1997) and a 

reasonable method of determining rules to classify patients into groups 

that explain cost.  Various algorithms have been proposed to build tree 

structured regression models, all of which tend to be minor variations 

on CART.  CART is efficient at producing simple and effective rules for 

prediction but also has its limitations.  We discuss the details of 

CART's strengths and limitations in the next section. 

After computing an unbiased estimate of the predictive performance 

of a particular regression tree it is still difficult to judge how much 

better we might have done if we were not subject to CART's limitations. 

We know that R-sguared ought to be between 0.0 and 1.0 with the highest 

values indicative of nearly perfect prediction. But when its score is 

potentially much lower than 1.0 we need a way to judge whether CART has 

performed as best as could be expected. To further investigate this we 

compared CART's performance with other methods. 

We compared CART to ordinary linear least squares regression 

models, generalized additive models (GAM), and multiple adaptive 
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regression trees (MART).  The first of these three methods is classic, 

the second is relatively new, and the last is the latest in prediction 

methodology.  These models are all discussed in the statistical 

literature.  We used the version of GAM (Hastie and Tibshirani, 1990, 

Generalized Additive Models, Chapman and Hall) implemented in the 

statistical package S-plus.  MART is described in Friedman (2000), and 

we used software provided by the author. 

To determine which models fit best we will assess each model's 

predictive performance on preceding and subsequent years.  That is, we 

will fit each model (CART, linear regression, GAM, and MART) to 1997 

data, for example, and use that model to predict cost for 1996, 1998, 

and 1999.  The model that consistently predicts cost the best, in terms 

of the average squared difference between the actual and predicted cost, 

across the various years and RICs will be the gold standard. 

3.1.2 Explore Predictive Ability of Other Functional Measures 

The search for an ideal index set to predict cost occurred in two 

stages.  First, we examined individual components.  The main question 

was whether the components entered the model in the expected direction. 

More specifically we fit a linear regression model predicting cost from 

the components of the motor and cognitive scale.  We checked to see 

which, if any, of the components had positive coefficients implying that 

greater functional independence increased cost.  Such irregularities 

would flag further investigation of the data collection process for that 

component of the scale.  We then might reconsider how or if it would be 

used in the index set.  We also fit GAM to the components to look for 

non-linear effects. 

Second, we experimented with the sub-scales described in Stineman, 

Jette, et al. (1997b).  These split out the standard motor index into 

dimensions reflective of different body areas and types of function. 

3.1.3 Examine Stability Across Years 

Our previous results were based on 1996 and 1997 data, and did not 

give us much latitude for examining stability over time.  We did verify, 

however, that the FRGs on the 1994 data predicted costs well in 1996 and 

1997.  With the addition of 1998 and 1999 data, we have the option of 
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fitting models within each year and seeing how well they do on other 

years.  We also have the ability to pool multiple years worth of data 

for RICs that are small and hence would not otherwise have much out-of- 

sample predictive power. 

3.2 COMPUTATIONAL DESIGN 

3.2.1 Types of Models 

We list below the types of models we fit and our reasons for 

fitting them.  Included with each of the methods is a two-dimensional 

visualization of the surface that each model fits to data.  The data 

come from RIC 01 (Stroke) combining 1998 and 1999 data.  The darkest 

regions of the plots show the regions where the model predicts the 

lowest cost for the motor and cognitive score combination.  Since such 

visualization is limited to two dimensions, the plot intentionally 

excludes age. 

A. OLS--Ordinary least squares.  Linear models are fit with 

ordinary least squares regression.  In a linear model, a fixed amount of 

change in an independent variable, anywhere along its scale, results in 

the same change in the prediction of the dependent variable.  For 

example, a change in the motor score from 2 0 to 21 would decrease 

predicted cost by the same percent as a change from 60 to 61.  In other 

words, the coefficients of ordinary least squares report the increase in 

log-cost due to a unit increase in an individual component of the FIM 

measure. 

Figure 3.1 demonstrates the linearity by the parallel contours.  It 

also shows that the strongest effect is due to the motor score. 
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Figure 3.1—Linear Model 

This compact representation allows for easy interpretation and diagnosis 

of the model.  In particular, we looked for coefficients that indicated 

that increases in functional ability tended to increase cost.  We 

flagged these components for further investigation.  Besides the 

interpretation, OLS is computationally inexpensive and often provides an 

accurate approximation to the relationship between log-cost and the 

functional measures.  It would be an appropriate gold standard if the 

assumption of a linear relationship between the independent variables 

and the dependent variable is true or approximately true. 

B. GAM—Generalized additive models.  GAM permits slightly more 

flexible relationships between the dependent and independent variables. 

GAM approximates the relationship as a sum of smooth (rather than 

linear) functions of the independent variables.  This means that a 

change in motor score from 20 to 21 might decrease predicted cost by a 

different percentage than a change from 60 to 61.  It does not model 

interactions, but only produces estimates of additive effects.  Because 

the relationship is assumed additive, the decrease in predicted cost due 

to a change in motor score from 20 to 21 will be the same regardless of 
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the values of the other independent variables.  The top two panels of 

Figure 3.2 compare the linear model to GAM for predicting cost from 

motor score.  Although the two fits seem to agree closely, the GAM fit 

shows evidence that the effect of motor score tapers off as motor score 

gets smaller.  The discussion of the bottom two plots is in a later 

section. 

Linear model GAM 

40 60 

Motor score 

CART 

40 60 

Motor score 

40 60 80 

Motor score 

MART 

40 60 

Motor score 

Figure 3.2—Comparison of Models for the Univariate Case 

Although the additivity restriction may prevent the discovery of 

interaction effects in multivariate data, the benefits of additivity 

include easy computation and interpretation.  To interpret GAM we can 

plot for each index the value of the index versus the contribution it 

makes toward the log-cost estimate.  We can then visually look for 

irregularities, saturation effects, and threshold effects.  For example, 

we may learn that patients with motor scores exceeding a particular 

value have roughly constant cost, an example of a saturation effect. 

GAM does use more degrees of freedom than OLS but conserves them by 
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imposing the additive constraint and restricting the additive components 

to be very smooth, spending roughly four degrees of freedom per 

predictor.  GAM will also work well in small RICs. 

Figure 3.3 shows the shape of the GAM fit.  Clearly, GAM picks up 

curvature that the linear model cannot.  It is still apparent that the 

motor score is the most influential.  However, GAM also seems to pick up 

that at extreme values on the cognitive scale the cost is slightly lower 

than for cognitive scores in the middle of the range. 
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Figure 3.3—Generalized Additive Model 

The cost of the additional flexibility is greater model complexity 

and variability.  However, that same flexibility that makes GAM more 

complex also can make its predictions more accurate than the linear 

model when the relationship between the dependent and independent 

variables is non-linear. 

C. MART—Multiple adaptive regression trees.  MART is a state-of- 

the-art statistical method.  MART is the most flexible and most complex 

of the models under consideration as a gold standard.  Like GAM, it is 

nonparametric with the ability to find non-linear relationships. 
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However, it is also able to find interaction effects in the predictor 

variables. 
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Figure 3.4—Multiple Adaptive Regression Trees 

The MART prediction is the sum of predictions from many simple CART 

models.  The algorithm constructs the CART models sequentially in such a 

way that each additional CART model reduces prediction error.  Since 

each CART model fits an interaction effect, the sum of many of them 

(100s to 1000s) results in a prediction model that permits complex, non- 

linear relationships between the dependent and independent variables. 

We can control the depth of interaction effects MART tries to capture by 

controlling the depth of the individual CART models. 

If cost varies in a non-additive way across motor score and 

cognitive scores, then MART might be able to capture this information 

and provide predictions that are more accurate than GAM.  Figure 3.4 

shows the shape of the MART fit.  Like GAM, MART determines that in the 

high cognitive values have lower costs than the lower cognitive scores 

at a fixed motor score.  Furthermore, MART shows that costs decrease 

much faster at the high cognitive scores for very low motor scores. 
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This is a feature that the functional form of GAM cannot detect.  When 

such effects are strong then MART would likely outperform GAM.  This 

makes it a good candidate for the gold standard. 

Like GAM, the additional complexity complicates interpretation.  It 

is difficult to interpret and it is difficult to quantify the number of 

degrees of freedom that it spends.  However, some measures of variable 

influence and visualization tools are available for evaluating the 

predictor's rationale.  It is not clear if it will always work well for 

very small RICs, but results show that it has been competitive with GAM. 

D. CART—Classification and regression trees.  CART is a well-known 

technique for building classification models (Breiman et al., 1984). 

CART requires a dependent variable (here, log-cost), and it seeks to 

develop predictors of the dependent variable through a series of binary 

splits from a candidate set of independent variables (here, age, FIM 

motor score, and FIM cognitive score).  CART partitions the data into 

two groups according to the independent variables.  Such a partition 

might separate patients with motor score exceeding 50 from those with 

motor score less than 50.  CART chooses the variable on which to split 

the data and the value of the variable at which to split so that the new 

partitions are more homogeneous in terms of log-cost.  The partition 

minimizes the squared prediction error.  CART then recursively splits 

each partition until it satisfies some stopping criteria. 

Figure 3.5 shows how CART partitions in the data example.  Figure 

3.6 shows the dendrogram (tree) version of the plot.  The findings are 

not unlike those of the previous analysis.  We can still see that motor 

is the primary effect although at high motor scores cognitive ability 

can be influential.  The linear model, or GAM, cannot detect such 

interaction effects.  However, the boundaries are abrupt and 

discontinuous.  This is particularly noticeable in Figure 3.2.  There, 

the CART fit seems to be trying hard to fit a fairly smooth function yet 

is necessarily jagged.  This kind of bias is likely to detract from the 

fit relative to GAM or MART. 
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Figure 3.5—Classification and Regression Tree 

By recursively partitioning the data, CART essentially fits 

interaction terms and thus can miss some main effects.  CART has the 

pleasing theoretical property that as the sample size grows the 

prediction rule converges to the one that minimizes the expected 

prediction error.  However, even in large finite samples CART can fail 

to fit curvature well (underfit) or can infer curvature where none 

exists (overfit).  CART is a high-variance regression method, meaning 

that small fluctuations in the data set can produce very different tree 

structures and prediction rules.  An early split will influence the 

shape of the tree and produce results that may be nonsensical.  In 

practical use with large data sets, CART can produce a tree with many 

partitions causing difficulty in interpretation and evaluation of the 

inferred rules. 
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Figure 3.6—Dendrogram of the CART Model 

With knowledge of these limitations, CART can still be a useful and 

powerful tool.  The CART model offers the advantage of producing groups 

determined by ranges of the independent variables.  It becomes easy to 

classify a new patient by comparing the values of the patient's set of 

independent variables with the ranges that define each of the CART 

determined groups.  Our use of CART focused on three stopping criteria, 

all of which attempt to estimate the optimal number of partitions to 

generate from the data. 

D.I. XVAL--CART, standard cross-validation to minimize MSE.  CART'S 

performance can be very sensitive to the number of partitions it 

produces.  Too few partitions fail to separate patient groups with very 

different associated costs.  Too many partitions cause the cost 

estimates to be unreliable as well as causing difficulty in practical 

implementation of the payment formula.  Somewhere in between is the 

optimal number of partitions. 
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We used ten-fold cross validation, the most widely used method, to 

estimate the number of partitions.  This method splits the data into ten 

groups containing equal numbers of patients.  For each of the splits we 

construct a CART model on the other 90 percent of the observations and 

evaluate the performance of various tree sizes on the current validation 

split.  We then average the performance over the ten validation runs by 

tree size.  We select the tree size with the lowest cross-validated mean 

squared error to be the best tree size.  We fit a final single CART 

model to the entire data set, stopping when the tree size reaches the 

ten-fold cross-validation choice. 

D.2 1SD--CART, stop when within one standard deviation of minimum 

MSE.  Since we are working with fairly large data sets, it turns out 

that the ten-fold cross-validation method can produce models with far 

too many splits.  We needed to introduce "practical" considerations into 

the stopping criteria.  Breiman et al. (1984, 78-80) recommended a more 

aggressive stopping rule to fix the number of partitions that corrects 

this situation.  They suggest placing confidence bands around the cross- 

validated estimate of prediction error by tree size.  Then choose the 

first node where prediction error is within one standard error of the 

minimum.  This reduces the number of partitions, reduces the probability 

of overfitting, and could cause some more heterogeneous groups (in terms 

of log-cost) to be combined. 

D.3 INT--CART, interim report numbers of nodes.  This algorithm 

simply fixes the number of nodes to be those used in the project's 

Interim Report (DRU-2309-HCFA, July 2000, Table 3.12).  This stopping 

criterion is based on 1997 data and is useful for comparison with the 

high variance methods that must estimate the tree size in combination 

with the partitions and payment levels for each partition. 

3.2.2 Alternative Functional Impairment Indices 

Table 3.1 shows the FIM items that we considered as independent 

variables.  From these we assembled various indices by summing item 

responses to determine whether predictive strength varied across items 

or groups of items. 
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Table 3.1 

The Candidate Indices 

Items M13C5 M12C5 M12C4 StJe3 StJe5 

transfer to 
tub/shower 

standard 
motor 

X X X X 

transfer to 
bed/chair 

motor 
excluding 
trftub 

motor 
excluding 
trftub 

mobility 
excluding 
trftub 

transfer 
excluding 
trftub transfer to 

toilet 
Walking/ 
wheelchair locomotion 

stairs 
bladder 

ADLS 

sphincter 
bowel 
eatinq 

self care 

grooming 
bathing 
dress upper 
dress lower 
toilet 
comprehension 

standard 
cognitive 

standard 
cognitive 

X 

standard 
cognitive 

standard 
cognitive 

expression 

cognitive 
excluding 
compreh 

social 
interaction 
problem 
solvinq 
memory 
Note: transfer 

mobility indices, 
take transfer to 
use them. 

to tub has been a traditional component of all these 
However, for reasons developed in Section 3.3.1, we 

tub out of the relevant indices when the time comes to 

A. Components.  The motor FIM scale contains 13 items and the 

cognitive FIM contains five.  The Component index set allows each of the 

individual items to contribute to the model as independent variables. 

We wanted to try all of the 18 responses to see what additional 

information they might provide.  We hypothesized that there would not be 

enough information in the data to fit interactions among these.  Indeed, 

when we initially fit CART models on all indices, we were getting very 

poor fits.  We thought, however, that additive models might give useful 

information on their relative contributions, and we attempted to apply 

both OLS and GAM to these. 
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One other piece of information that we wanted to examine was the 

indicator of mode of locomotion: whether wheelchair or walking.  We 

experimented with a wheelchair dummy variable and an interaction between 

the wheelchair indicator and the walk/wheelchair response in our OLS and 

GAM fits. 

B. M13C5—Standard two scales (motor + cognitive).  These were the 

standard indices that we had used for the interim report.  Only two 

terms are in this index, the sum of the 13 responses to the motor FIM 

items and the sum of the five responses to the cognitive FIM items. 

C. M12C5—Standard, but exclude transfer to tub/shower in motor 

score.  This index set arose during the course of our investigation of 

individual items.  As discussed further in Section 3.3.1, we found that 

patients with greater functional independence in transfer to tub/shower 

tended to cost more.  Thus it is reasonable to believe that eliminating 

this item from the motor score may improve the prediction of cost. 

Only two terms are in this index, the sum of 12 responses to the 

motor FIM (transfer to tub excluded) and the sum of the five responses 

to the cognitive FIM. 

D. M12C4—Standard, exclude tub transfer in motor score and 

comprehension in cognitive score.  This index set also arose during the 

course of our investigation of individual scores (see Section 3.3.1). 

In the cognitive FIM, increased functional independence on the 

comprehension component tended to increase cost.  Consequently, we 

explore eliminating the comprehension item from the cognitive scale, 

although eliminating this item may be undesirable for reasons discussed 

further in Section 3.3.3. 

Only two terms are in this index, the sum of 12 of the responses to 

the motor FIM (transfer to tub excluded) and the sum of four of the 

responses to the cognitive FIM (comprehension excluded). 

E. StJe3—Stineman and Jette, Activities of daily living (ADLS, 

mobility, standard cognitive).  This and the following index set were 

proposed by Stineman et al. (1997a) as sub-scales of the cognitive and 

motor score that might relate to specific impairments.  This index was 

found to describe dimensions of function within the large stroke RIC. 

Our question is whether there is additional information in these indices 
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that could help to predict cost and to improve on the classification 

system, either in some or in all RICs.  We set out to determine their 

potential contribution to cost prediction.  Initially, we developed 

these indices as defined by Stineman.  However, once we determined that 

we preferred the motor index without tub transfer (item C, above), we 

defined its corresponding component mobility/transfer to exclude tub 

transfer as well. 

This index set has three components, the sum of four of the 

mobility components of the motor FIM (transfer to tub excluded), the sum 

of the eight daily living components of the motor FIM, and the sum of 

all five of the components of the cognitive FIM. 

F. StJe5—Stineman and Jette, four motor scores (self-care, 

sphincter, transfer, locomotion) plus standard cognitive.  This index 

set is a further decomposition of the previous set.  It breaks down the 

ADLS index into self-care and sphincter and decomposes the mobility 

index into transfer and locomotion subindices.  They were found by 

Stineman and Jette to be dimensions of function in RICs 6 through 14, 

17, 19, and 20. 

This index set has five components, the sum of two of the transfer 

components of the motor FIM (transfer to tub excluded), the sum of the 

two locomotion components of the motor FIM, the sum of the two sphincter 

control components of the motor FIM, the sum of the self-care components 

of the motor FIM, and the sum of all five of the components of the 

cognitive FIM. 

3.2.3 Fitting and Evaluation Periods 

To validate the various estimators of the relationship between the 

indices and log-cost we evaluate each method in terms of out-of-sample 

predictive performance.  The most important fits, of course, are the 

ones based on the most recent data, for they will determine the payment 

system.  We can get an idea of how well they will perform by seeing how 

earlier years' fits perform on following years' data.  We initially 

tried fitting separate models for each year and seeing how well they 

performed on all other years.  This would yield 12 out-of-sample 

fits/evaluations.  We later improved that by observing that some RICs 
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(e.g., 04, 11, 18, 19, 21) were quite small, and it might be 

advantageous to pool their data.  This led to experimenting with fitting 

periods 1996-97 and 1998-99.  Thus, the full set of fits and predictions 

is described by the appearance of "x" in Table 3.2. 

Table 3.2 

Combination of Fitting and Evaluation Periods Examined 

Evaluation Period 
Fitting Period 1996 1997 1998 1999 

1996 . X X X 

1997 X . X X 

1998 X X . X 

1999 X X X 

1996-97 . X X 

1998-99 X X . . 

3.3 RESULTS 

3.3.1 Item Level Analysis 

We ran OLS with individual sub-scales (eating, walking, etc.).  We 

wanted to know whether the individual items appeared to influence costs 

in the expected direction: higher FIM scores should mean lower costs. 

OLS with log-cost would be the easiest method to interpret.  If the 

estimated coefficients were positive, a variable's effect would be 

inconsistent with clinical expectations. 

Randomness alone would produce numerous positive regression 

coefficients: there are 18 individual components, 21 RICs, coefficients 

can be measured imprecisely, and so we expect a number of small t- 

statistics that could be on either side of zero.  However, we have good 

power to detect if a given effect is consistently positive.  If the 

pattern of positive signs persists for all four years of data and for 

several RICs within each year, we would have some confidence that found 

an anomalous item. 

Table 3.3 shows for the OLS regressions how many RICs had a 

positive sign within each of the data sets across the 21 RICs, and how 

many these coefficients had t-statistics greater than 1.0.  The 

unmistakable patterns are that both tub transfers and comprehension 
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often have the wrong sign in OLS regressions--costs were higher when the 

functional independence measure was higher. 

Table 3.3 

Component Regressions: 
Occurrences of Positive Regression Coefficients in 21 RICs 

Positive OLS Coefficients OLS t-statistio=l. 0 

Variable 1996 1997 1998 1999 96-97 98-99 1996 1997 1998 1999 96-97 98-99 

comprehens ion 19 15 19 19 20 20 13 11 15 15 15 16 

expression 7 4 6 7 4 4 3 1 2 1 1 3 

social 

interaction 

14 10 7 9 11 7 6 3 1 3 5 3 

problem 

solving 

3 4 4 7 3 4 0 1 2 2 0 2 

memory 5 5 4 2 4 1 3 2 0 1 1 0 

eatinq 1 0 1 0 0 1 1 0 0 0 0 0 

qroominq 9 11 13 12 8 12 5 7 9 7 6 10 

bathinq 5 2 2 1 2 2 0 1 1 0 0 0 

dress upper 

body 

13 10 12 14 11 15 3 3 7 10 6 10 

dress lower 

body 

0 3 1 1 1 0 0 1 0 0 1 0 

toiletinq 0 0 1 1 0 1 0 0 0 0 0 0 

bladder 1 1 1 3 1 0 0 0 0 0 0 0 

bowel 11 6 14 12 7 13 4 5 3 5 6 6 

transfer to 

bed 

2 2 0 0 1 0 0 1 0 0 1 0 

transfer to 

toilet 

2 1 0 2 0 0 1 0 0 0 0 0 

walking 1 0 0 0 0 0 0 0 0 0 0 0 

stairs 5 3 5 4 2 4 2 2 2 2 2 1 

transfer to 

tub 

17 19 21 18 20 20 14 13 18 16 13 18 

We believe that the perverse effect of transfer to tub is due to 

the fact that the response depends on the situation being scored—either 

tub or shower and with or without assistive devices.  The UDSmr question 

and answer manual says: "It may be that a subject's score goes down as 

he/she no longer requires the use of some assistive device" (p. 31).  It 

is likely that patients who do not use a device at admission score worse 

than patients who do—so the FIM item provides only a situational 

measure of independence rather than an absolute measure. 
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We have no similar rationale for the comprehension results.  It may 

be that this finding reflects only that many hospitals do more for 

patients that understand what is happening.  However, eliminating this 

item raises issues related to incentives and fairness.  If we take the 

comprehension item out of the index, the system will provide no extra 

incentives to treat patients with lowered comprehension.  If some 

hospitals do spend extra to treat such patients, they will not be 

compensated for such extra resources.  On the other hand, if this really 

represents the current pattern of best care, our system should reflect 

it. 

To confirm that OLS was not overlooking important non-linear 

effects, we also looked at plots of the marginal contributions of each 

component, as estimated by GAM.  Although log-cost did not always 

smoothly decline with the seven-point scale, there were only two items 

where the relationship was perverse.  These were the same ones that 

showed up in the linear models: comprehension and transfer to tub. 

One other piece of information that we wanted to examine was the 

mode used in the walk/wheelchair item.  We experimented with a 

wheelchair dummy variable and an interaction between the wheelchair 

dummy and the FIM walk/wheelchair response in our OLS and GAM fits.  We 

found that, in most RICs, wheelchair patients cost more than expected 

given their functional scores, and locomotion score is less important 

when in a wheelchair than when walking.  The net effect of wheelchair 

alone was quite small.  However in the two RICs that have the most 

wheelchair people (RICs 4 and 10), neither wheelchair functional status 

nor the wheelchair indicator is significant.  Thus, adding these 

variables will not result in a substantial improvement in prediction of 

cost. 

3.3.2 Selecting a Gold Standard Model 

Having a gold standard model does two things.  First, it helps us 

understand how well CART is doing--it gives us a measure of attainable 

residual standard deviation, to compare to the residual standard 

deviation we get from CART.  Second, it will enable us in a simulation 

exercise to assess the prediction bias for various combinations of 
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demographic and hospital factors.  The latter simulations will be 

performed in the project's final report. 

MART and GAM are the candidates for gold standard status.  We have 

theoretical reasons to prefer MART.  It is extremely flexible, and it 

detects interactions.  However, its prediction formula is rather 

unwieldy.  Also, some RIC sample sizes are small, and it may be that 

without forcing some structure, one effectively fits too many parameters 

and gets a model that does not extrapolate very well.  On the other 

hand, GAM uses fewer degrees of freedom, and produces a curve to 

describe each input variable's effects, so it is a little easier to 

decide whether the GAM fits make clinical sense.  Without a clear a 

priori winner, we decided to perform our computations on both GAM and 

MART. 

Knowing that CART would not produce reasonable models with just 

component scores, we chose not to work further with the components at 

this point.  We fit all combinations of models and remaining indices 

(six types of models, five types of indices, six fitting periods).  We 

looked at out-of-sample root mean squared prediction error (RMSE) as a 

measure of quality of fits.  Aggregate RMSEs across RICs are provided in 

Table 3.4. 
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Table 3.4 

Root Mean Squared Errors Among Candidate Gold Standard Models 

Fit 

Yr 

Eval 

Yr 

Const M13C5- 

GAM 

M13C5 

-MART 

M12C5 

-GAM 

M12C5- 

MART 

M12C4- 

GAM 

M12C4- 

MART 

StJe3- 

GAM 

StJe3- 

MART 

StJe5- 

GAM 

StJe5- 

MART 

96 97 .541 .475 .474 .474 .473 .474 .473 .471 .470 .467 .467 

98 .545 .480 .480 .479 .479 .479 .479 .475 .475 .473 .473 

99 .546 .483 .484 .482 .482 .482 .482 .479 .479 .476 .476 

97 96 .536 .469 .468 .468 .467 .468 .467 .465 .465 .462 .462 

98 .545 .480 .479 .479 .478 .479 .478 .475 .475 .472 .471 

99 .546 .483 .483 .482 .482 .482 .481 .478 .478 .476 .475 

98 9S .536 .469 .469 .468 .468 .468 .468 .465 .465 .463 .463 

97 .541 .475 .474 .474 .473 .474 .473 .471 .470 .468 .467 

99 .546 .482 .482 .481 .480 .481 .481 .477 .477 .475 .474 

99 96 .536 .470 .470 .469 .469 .469 .468 .466 .466 .463 .463 

97 .541 .475 .475 .474 .474 .474 .473 .471 .471 .468 .467 

98 .545 .480 .479 .479 .478 .478 .478 .475 .474 .472 .471 

96-97 98 .545 .480 .479 .479 .478 .479 .478 .475 .474 .472 .471 

99 .546 .483 .483 .482 .481 .481 .481 .478 .478 .476 .475 

98-99 96 .536 .469 .469 .468 .468 .468 .468 .465 .465 .463 .462 

97 .541 .475 .474 .474 .473 .474 .473 .471 .470 .467 .466 

The RIC constant column fits means to RICs (i.e., one FRG per RIC). 

Thus it is the within RIC variance of the log of the cost of cases, 

using a case-weighted average across RICs.  It measures the amount of 

variance that might be explained by defining FRGs within each RIC. 

Then, for each index set, we show RMSEs for GAM and MART. 

There are several interesting things to observe.  First, MART 

sometimes does a tiny bit better than GAM, but they do about equally 

well.  Second, the index without transfer to tub (M12C5) does slightly 

better than the index with it (M13C5) in at least one model in all 

combinations of fitting and prediction years.  Comparing M12C5 to the 

similar model without the comprehension item (M12C4), we find dropping 

comprehension improves prediction in only six of the 16 predictions that 

we evaluated.  Third, both GAM and MART seem to be able to make use of 

additional index information.  RMSE goes down as the number of indices 

goes up, and the RMSE is lowest for the most disaggregated set of 

indices StJe5.  Finally, the RMSEs are all large, even for StJe5.  About 

15 percent of the standard deviation, or 25 percent of the variance, is 
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explainable.  But we cannot do better than that by creating FRGs.  Case 

level costs are inherently unpredictable.1 
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Figure 3.7—RMSEs by Fit and Prediction Years: RIC=01, Index+StJe5 

1 The payment system, of course, also exploits the variance across 
RICs in cost.  About 34 percent of the total variance in the wage 
adjusted cost of cases discharged to the community is predicted by the 
FRG system and 37 percent by our gold standard models. 
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Figure 3.8—RMSEs, by Fit and Prediction Years: RIC=07, Index=StJe5 

-°-o. 
Fit96 

V 

Fit97 

A_A-^=A 

0 sdlncost 
A GAM 
+ MART 

-o- 
Fit98 

^* ■\A^ 

^ o -o 
Fit99 

>** = ♦; 

Fit96:7 

■A-4> 

o"    ^o-o 
Fit98:9 

>^c A-A 
■+- + 

n—i—i—|—i—i—i—n—i—i—n—i—i—n—i—i    n    i    i    r 
96        98       96        98       96        98       96        98       96        98       96 98 

Prediction Year 

Figure 3.9—RMSEs, by Fit and Prediction Years, RIC=04, Index+StJe5 
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Figure 3.10—RMSEs, by Fit and Prediction Years: RIC=18, Index=StJe5 

We also looked at reductions in standard deviation within each RIC. 

Percentage reductions varied from about 2 0 percent for stroke (RIC 01) 

to about 10 percent for the three orthopedic RICs (07, 08, 09).  These 

orthopedic RICs are substantially more homogeneous in cost than other 

RICs, so that despite the fact that we predict a smaller fraction of the 

variance in these RICs, they have RMSEs that are among the lowest of all 

other RICs.  Figures 3.7 and 3.8 show what was typical of most RICs: 

MART and GAM perform about equally well, but MART does a little better 

across prediction periods.  Performance in the smaller RICs was similar 

(see Figures 3.9 and 3.10), although sometimes GAM did a little better. 

But in no case did GAM seem to dominate MART across prediction periods. 

In summary, we saw that MART seemed to be a little better than GAM 

for many RICs, validating the observations we made above at the 

aggregate level.  From the standpoint of determining the percent of 

explainable standard deviation, we decided to use MART with index set 

StJe5 as the gold standard.  Prior to reviewing exactly which models to 

use within each RIC for our final report simulations, we assume that 

this model will provide a good estimate of the percent of explainable 

standard deviation attained by our CART models. 
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3.3.3 Evaluation of CART Models 

We have shown above that we achieve the best prediction using MART 

and the StJe5 index set. But this does not lead to a simple payment 

system, and may meet the definition of patient groups found in the law. 

We would need a complex computer program to evaluate the formula. This 

is not compatible with the design criteria of the payment system. CART 

is therefore employed to produce simple, understandable patient groups. 

We introduce the alternative CART models we considered by reviewing 

the results for the index set used in our interim report--M12C5.  Table 

3.5 shows RMSEs for the M12C5 model.  The further to the right, the more 

FRGs in the CART model.  The RIC constant column fits means to RICs 

(i.e., one FRG per RIC) and repeats the data from Table 3.4.  The 

interim report used the one standard deviation rule with some 

adjustments; it performs similar to the 1SD rule applied here.  The XVAL 

column shows how well CART does with its standard cross-validation 

stopping rule, which tends to produce more than twice the terminal nodes 

as 1SD. 
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Table 3.5 

Performance of Alternative CART Models: Index = M12C5 

Within-RIC 

Standard Deviations 

Percent of SD 

Explained (*) 

Number of 

Nodes 

Fit 

Yr 

Eval 

Yr 

Const INT 1SD XVAL StJe5- 

MART 

INT 1SD XVAL INT 1SD XVAL 

96 97 .541 .480 .480 .477 .467 82.4 82.4 86.5 104 101 239 

98 .545 .486 .486 .483 .473 81.9 81.9 86.1 

99 .546 .489 .489 .486 .476 81.4 81.4 85.7 

97 96 .536 .474 .473 .471 .462 83.8 85.1 87.8 104 101 239 

98 .545 .485 .485 .482 .471 81.1 81.1 85.1 

99 .546 .488 .488 .485 .475 81.7 81.7 85.9 

98 96 .536 .474 .474 .472 .463 84.9 84.9 87.7 104 123 303 

97 .541 .479 .479 .477 .467 83.8 83.8 86.5 

99 .546 .487 .486 .484 .474 81.9 83.3 86.1 

99 96 .536 .475 .474 .472 .463 83.6 84.9 87.7 106 119 288 

97 .541 .480 .479 .477 .467 82.4 83.8 86.5 

98 .54 5 .484 .483 .481 .471 82.4 83.8 86.5 

96-97 98 .545 .485 .483 .481 .471 81.1 83.8 86.5 104 137 351 

99 .546 .488 .486 .484 .475 81.7 84.5 87.3 

98-99 96 .536 .474 .472 .471 .462 83.8 86.5 87.8 108 176 478 

97 .541 .479 .477 .476 .466 82.7 85.3 86.7 

(*) The percent of standard deviation explained by 
0 equals the constant term model, and 100.0 equals the 

the model, where 
gold standard. 

The main observation is that the CART models traverse a substantial 

fraction of the distance between the constant model and the gold 

standard.  The CART FRGs explain more than 80 percent of the explainable 

standard deviation.  The 1SD model, which has less than half the nodes 

of XVAL, explains almost as much as XVAL. 

Table 3.6 compares the performance of the alternative CART models 

relative to the gold standard for all of the indices we considered.  It 

shows once again that M12C5 outperforms M13C5.  Considering the results 

for the INT models, which force an equal number of nodes, we notice that 

M12C5 does better per node than either StJe3 or StJe5.  M12C4 performs 

slightly better than M12C5, but also worse in two of the prediction 

model pairs. 
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Table 3.6 

Performance of Alternative CART Models: Percent of SD Explained 

Index=M12C5 Index=M12C4 Index=M13C5 Index=StJe3 Index=StJe5 

Fit 

Yr 

Eval 

Yr 

INT 1SD XVAL INT 1SD XVAL INT 1SD XVAL INT 1SD XVAL INT 1SD XVAL 

96 97 82.4 82.4 86.5 83.8 82.4 86.5 81.1 81.1 85.1 79.7 82.4 86.5 81.1 85.1 87.8 

98 81.9 81.9 86.1 83.3 81.9 86.1 81.9 80.6 84 .7 80.6 84.7 88.9 81.9 84.7 87.5 

99 81.4 81.4 85.7 82.9 81.4 85.7 81.4 80.0 84.3 80.0 82.9 87.1 80.0 82.9 87.1 

97 96 83.8 85.1 87.8 83.8 83.8 87.8 81.1 82.4 86.5 81.1 85.1 87.8 81.1 85.1 89.2 

98 81.1 81.1 85.1 81.1 81.1 85.1 79.7 79.7 83.8 79.7 83.8 86.5 79.7 83.8 87.8 

99 81.7 81.7 85.9 81.7 81.7 85.9 80.3 80.3 84.5 80.3 83.1 87.3 78.9 83.1 88.7 

98 9fi 84.9 84.9 87.7 84.9 86.3 89.0 82.2 83.6 86.3 80.8 84.9 89.0 82.2 86.3 89.0 

97 83.8 83.8 86.5 82.4 83.8 87.8 81.1 82.4 85.1 79.7 83.8 87.8 79.7 86.5 89.2 

99 81.9 83.3 86.1 81.9 83.3 86.1 79.2 80.6 84.7 79.2 84.7 87.5 79.2 86.1 88.9 

99 96 83.6 84.9 87.7 84.9 86.3 89.0 82.2 83.6 86.3 80.8 84.9 87.7 79.5 84.9 89.0 

97 82.4 83.8 86.5 83.8 83.8 87.8 81.1 82.4 85.1 79.7 83.8 87.8 79.7 86.5 89.2 

98 82.4 83.8 86.5 82.4 83.8 86.5 79.7 81.1 85.1 79.7 85.1 87.8 81.1 86.5 90.5 

96-97 9R 81.1 83.8 86.5 81.1 83.8 86.5 79.7 82.4 85.1 79.7 85.1 89.2 81.1 87.8 90.5 

99 81.7 84.5 87.3 81.7 84.5 87.3 80.3 83.1 85.9 80.3 85.9 90.1 80.3 87.3 90.1 

98-99 96 83.8 86.5 87.8 83.8 86.5 89.2 82.4 85.1 87.8 79.7 86.5 89.2 81.1 89.2 90.5 

97 82.7 85.3 86.7 82.7 85.3 88.0 80.0 84.0 85.3 78.7 86.7 89.3 80.0 88.0 90.7 

Having settled upon CART for the payment formula we are left to 

decide between the candidate indices.  The criteria are quality of fit 

and parsimony.  In the interim report we used 1SD-CART and 92 nodes.  If 

we use 1SD-CART with the multiple indices in StJe3 and StJe5, CART 

produces far too many nodes.  Raw 1SD-CART numbers of nodes in 1999 have 

186 nodes for StJe3 and 2 01 nodes for StJe5 with almost no improvement 

in RMSE.  If we fit with interim report number of nodes, we get RMSEs 

for StJe3 and StJe5 that are larger. 

In CART, the index with transfer to tub (M13C5) does noticeably 

worse than the index without this item in many years and never does 

substantially better.  This is similar to our findings with GAM and 

MART.  Because we believe this item does not measure and absolute level 

of function, we propose to recommend to HCFA that this item not be used 

in creating FRGs.  So, the choice seems to be between M12C5 and M12C4. 

The argument for going to M12C4 is that comprehension seems to work 

opposite to the standard cognitive scale in which it is embedded.  After 

fixing a stopping rule, dropping comprehension from the index produces a 

slightly better prediction in some years.  Further, the reduced 
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cognitive scale does not increase the frequency with which FRGs are 

defined by cognitive function.  Eliminating the comprehension item 

raises issues related to incentives and fairness.  If we take the 

comprehension item out of the index, the system will provide no extra 

incentives to treat patients with lowered comprehension.  If some 

hospitals do spend extra to treat such patients, they will not be 

compensated for such extra resources.  On the other hand, if this really 

represents the current pattern of best care, our system should reflect 

it.  The improvements in predicting cost are so slight that it seems to 

us that the decision should be based on clinical judgment about what 

should be paid for.  Consequently, we are requesting your opinion on the 

right policy choice concerning this item. 

3.3.4 Cost Patterns 

We wanted to understand the marginal contribution of motor and 

cognitive scores to the estimated log cost.  OLS coefficients provide 

such marginal estimates, but they enforce linear effects.  GAM provides 

marginal estimates and allows arbitrary curvature.  We attempted to 

understand the patterns of fit by graphing our GAM-M12C5 fits versus the 

motor and cognitive scales.  Because the GAM fits were almost as good as 

MART'S, we thought this would give an accurate portrayal of the cost 

versus scale relationships.  Those graphs are shown in Figures 3.11 

through 3.17 for a representative selection of RICs.  We computed and 

examined these graphs for fitting year 1999 and for pooled 1998 and 1999 

data. 
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Figure 3.11—GAM Motor Scale Fits: RIC=01, Fityear=99 
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Figure 3.12—GAM Motor Scale Fits: RIC=08, Fityear=99 
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Figure 3.13—GAM Motor Scale Fits: RIC=19, Fityear=98,99 
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Figure 3.14—GAM Cognitive Scale Fits: RIC=01, Fityear=99 
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Figure 3.15—GAM Cognitive Scale Fits: RIC=02, Fityear=99 
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Figure 3.16—GAM Cognitive Scale Fits: RIC=08, Fityear=9 9 
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Figure 3.17—GAM Cognitive Scale Fits: RIC=18, Fityear=98,99 

The plots are centered at zero, and are uniformly scaled to span 

the range of effects for all RICs.  You can see that the motor effects 

are always strong and sloping in the expected direction (larger scores 

yield lower costs).  The cognitive effects tend to be much smaller--very 

close to zero; also, higher scores are often associated with higher 

costs.  Since CART attempts to replicate these patterns, it will largely 

split on motor scores, and hence the FRGs will simply reflect the motor 

score effect. 

The GAM curves show cost as function of both the motor and 

cognitive scales.  If there were discontinuities in these curves, you 

would expect CART to discover them and to explain a lot of the 

variation.  But the cost curves are continuous.  At best, you are asking 

CART to approximate a smooth curve by a (small) series of discrete 

jumps.  This might lead you to expect a certain instability in CART'S 

choice of cut-points, and that different data sets will indeed produce 

trees where cut-points differ.  On the other hand, CART will find the 

steepness with respect to motor scores and should be expected to produce 

a lot of motor score splits. 

Cost is strongly influenced by motor scores and in the expected 

direction.  Except at certain motor score extremes, where there isn't 

much data, the higher the motor score, the lower the cost.  On the other 

hand, the cognitive effects (Figures 3.14-3.17) are relatively flat and 
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frequently not monotone.  This is true for indices M12C4 as well as 

M12C5.  If we were to ask CART to discover the cost pattern, it might 

produce FRGs that are not monotone, which we think could pose problems 

for a payment system.  The appropriate public policy decision might be 

to never lower payments for patients admitted with lower functionality-- 

i.e., develop monotone cost curve estimates. 

To see how far some of the GAM models were from monotone fits, we 

tried fitting the closest monotone function to each of the GAM patterns 

in a least-squares sense, and seeing how much of a difference this made 

in the percent of standard deviation explained.  The results are shown 

in Table 3.7.  The RMSEs increase by .001, a very small change.  We take 

this as evidence that monotone cost curves fit the data almost as well 

as unconstrained cost curves. 

Table 3.7 

Change in Root Mean Squared Errors Induced by Forcing Monotone Fits 

Fit Yr 
99 

98-99 

Eval Yr 
96 
97 
98 
96 
97 

Regular M12C5-GAM 
469 
474 
479 
468 
474 

Monotone M12C5-GAM 
469 
475 
479 
469 
474 

Increase 
.000 
.001 
.000 
.001 
.000 

3.3.5 Summary 

Among the indices we examined, the standard cognitive index and a 

motor index that excludes transfer to tub do as well or better than the 

alternatives we examined, although a cognitive index which excludes the 

comprehension score also performs well and deserves further 

consideration. 

Our current recommendation is to use M12C5 with 1SD-CART, which 

achieves more than 80 percent of the maximum possible reduction in 

standard deviation.  We evaluated RMSEs and found that M12C5 

outperformed the standard motor and cognitive scales.  It outperformed 

the expanded index set lists (StJe3, StJe5) in CART models where we 

constrained the number of nodes, but it was about equal and slightly 

worse than M12C4 in its overall performance. 
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We find that the patterns of variation are described by a strong 

relationship between motor and cost--higher motor scores lower cost, and 

a weak relationship between cognitive and cost.  The fitted curves do 

not appear to be far from monotone approximations that enforce an 

inverse relationship between cost and FIM scores.  This implies that 

that data will support a "monotone" payment scheme where higher FIM 

scores never lead to higher payments, perhaps a politically desirable 

situation.  We hope to get opinions from the TEP on this matter. 
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OBTAINING FRGS 

The preceding section supports our intention to develop FRGs 

through 1SD-CART models using the index M12C5.  In obtaining FRGs, we 

wanted to accommodate the following considerations. 

• If it looked like we could improve the fits by the addition of a 

node or two, do so. 

• Fits should be monotone decreasing in both the cognitive and 

motor indices.  That is, adding a point to the FIM score should 

not result in a prediction that you would cost more. 

• The number of nodes should be manageable--say, roughly 100.  For 

administrative simplicity, we did not wish to create a large 

number of groups.  In addition, we did not want to create groups 

characterized by very small intervals of motor or cognitive 

scales for fear it would encourage upcoding. 

• Groups which differ on a single factor (i.e., adjacent nodes of 

a tree) should differ "significantly" in payment amount. 

In addition, we wanted to implement these in a formal algorithm 

that could be judged on its own merits devoid of subjective 

considerations.  After considerable experimentation, we arrived at the 

following sets of rules. 

• Pool the data for 1998-99 where RIC sample sizes are less than 

1,000: this results in pooling for RICs 04, 11, 18, 19, and 21. 

Use 1999 data only for the other RICs. 

• Fit the 1SD-CART tree within each RIC. 

• Consider adding nodes to the 1SD trees where R2 (eguivalently, 

RMSE) will improve significantly.  Look at traces of R2 versus 

number of nodes, and look to see where the addition of a node 

would improve R2 by 4 percent or more; add that node, and 

repeat this step until additional node contributions are found 

to be less than 4 percent. 

• Produce tables describing trees and attributes of nodes (FRG 

numbers, N, fitted values (in dollars); flag cases where 
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increasing FIM scores result in higher predicted payment. 

These may lead to politically unacceptable payment formulas. 

• Because there tends to be a monotone decreasing relationship 

between cost and FIM scores, at least where effects are strong, 

non-monotonicities tend to occur at the bottom of trees. 

Joining adjacent bottom nodes of a tree can eliminate these. 

These occur most frequently when CART is inconsistent in its 

splits.  Consider the case where we have a series of splits on 

small motor score intervals and then only one of the intervals 

is split on age or cognitive function.  This last split may 

introduce a discontinuity even when the underlying function is 

monotone.  The higher cognitive function group might cost less 

than the total group with a lower motor score or the lower 

cognitive function group might cost more than the total group 

with a lower motor score.  This kind of non-monotonicity is an 

artifact of CART rather than the result of actual cost 

patterns.  We prune trees to eliminate all non-monotonicities. 

• Perform additional pruning on adjacent nodes where fitted 

values are close (i.e., $1500).  Repeat this step so long as 

adjacent nodes are within $15 00, but do not join any nodes that 

would result in a predicted value that differs from the 

original by more than $1,000. 

Table 4.1 shows how the number of nodes varied at each stage of 

this process.  1SD-CART started with 126 total nodes and expanded to 136 

with the addition of nodes that boosted R-squared.  The monotonicity 

requirement pared that down further the 118, and the pruning for close 

cost outcomes reduced that to 95.  Table 4.2 shows the aggregate 

standard deviations for each step of this process: the monotonicity 

requirement and subsequent pruning affected RMSEs minimally--less than 

.002.  Table 4.3 displays the 136-node model prior to the pruning, and 

shows what was grouped to accommodate both monotonicity and proximity of 

adjacent nodes.  For example, grouping (d) was made for monotonicity 

purposes.  Grouping (f) joined the first four lines to remove 

monotonicity violations, and then later added a fifth line because of 

node value proximity.  Table 4.4 displays the final 95-node model, shown 
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in a format similar to Table 3.12 of the May 2000 interim report (DRU- 

2309-HCFA). 

Table 4.1 

Number of Nodes at Various Stages of Pruning 

RIC 1SD ADD MON FNL Description 

01 18 18 18 14 Stroke 

02 5 5 5 5 Brain dysfunction, traumatic 

03 4 4 4 4 Brain dysfunction, nontraumatic 

04 5 5 4 4 Spinal cord dysfunction, traumatic 

05 6 6 6 5 Spinal cord dysfunction, nontraumatic 

06 4 4 4 4 Neuroloqical conditions 

07 16 16 10 5 Orthopedic--lower extremity fracture 

08 22 22 12 6 Orthopedic--lower extremity joint 

repl 

09 6 6 6 4 Orthopedic other 

10 3 5 5 5 Amputation, lower extremity 

11 2 3 3 3 Amputation, other 

12 4 6 6 5 Osteoarthritis 

13 3 4 4 4 Rheumatoid and other arthritis 

14 4 4 4 4 Cardiac 

15 4 4 4 4 Pulmonary 

16 4 4 3 2 Pain syndrome 

17 3 3 3 3 Major mult trauma, wo/inj to brain or 

spinal cord 

18 2 4 4 4 Major mult trauma, w/inj to brain or 

spinal cord 

19 2 3 ■ 3 3 Guillain-Barre 

20 8 8 8 5 Other disablinq impairments 

21 1 2 2 2 Burns 

Total 126 136 118 95 
Notes: 1SD = 1SD-CART; ADD = 1SD, plus nodes that increase R-squared; 

MON = ADD, after pruning for non-monotonicities; FNL = MON, after 
pruning where exponentiated averages are "close" 

Table 4.2 

RMSEs at Various Stages of Pruning 

Fit Yr Eval Yr 1SD ADD MON FNL 

99 96 0.474 0.474 0.474 0.475 

97 0.479 0.479 0.479 0.480 

98 0.483 0.483 0.483 0.485 

99 0.484 0.483 0.484 0.486 

Notes: 1SD = 1SD-CART; ADD = 1SD, plus nodes that increase R-squared; 
MON = ADD, after pruning for non-monotonicities; FNL = MON, after 
pruning where exponentiated averages are "close" 
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Table 4.3 

136-Node FRG Models, Before Correcting for Non-monotonicities and 
Proximity 

RIC FRG N Cost Grouping Condition 

01 18 4215 20869 M<41.5 & M<33.5 & A<81.5 & M<26.5 
17 3763 18233 M<41.5 & M<33.5 & A<81.5 & M>26.5 
16 1065 18546 M<41.5 & M<33.5 & A>81.5 & A<88.5 & M<26 .5 
15 1003 16252 M<41.5 & M<33.5 & A>81.5 & A<88.5 & M>26 .5 

14 584 14750 M<41.5 & M<33.5 & A>81.5 & A>88.5 
13 3620 15756 M<41.5 & M>33.5 & M<38.5 & A<82.5 
12 987 13739 M<41.5 & M>33.5 & M<38.5 & A>82.5 

11 3102 13616 M<41.5 & M>33.5 & M>38.5 

10 4663 12149 (a) M>41.5 & M<52.5 & M<46.5 & C<31.5 

09 1090 11037 (a) M>41.5 & M<52.5 & M<46.5 & C>31.5 

08 2838 10754 (b) M>41.5 & M<52.5 & M>46.5 & C<28.5 & M<50 5 

07 1254 9779 (b) M>41.5 & M<52.5 & M>46.5 & C<28.5 & M>50 5 

06 2628 9265 (b) M>41.5 & M<52.5 & M>46.5 & C>28.5 
05 2413 8822 (c) M>41.5 & M>52.5 & M<58.5 & C<29.5 
04 1718 7325 (c) M>41.5 & M>52.5 & M<58.5 & C>29.5 
03 551 7927 M>41.5 & M>52.5 Sc  M>58.5 & C<22.5 
02 1596 6400 M>41.5 & M>52.5 & M>58.5 & C>22.5 & M<68 5 

01 250 5064 M>41.5 & M>52.5 & M>58.5 & C>22.5 & M>68 5 

02 05 428 19149 M<39.5 & M<29.5 

04 400 14101 M<39.5 & M>29.5 

03 602 11522 M>39.5 & C<23.5 

02 303 9858 M>39.5 & C>23.5 & M<51.5 

01 320 7137 M>39.5 & C>23.5 & M>51.5 

03 04 442 20333 M<40.5 & M<24.5 

03 1099 14429 M<40.5 & M>24.5 

02 1164 10754 M>40.5 & M<50.5 

01 1053 8168 M>40.5 & M>50.5 

04 05 111 14913 (d) M<35.5 & M<18.5 & A<55.5 

04 171 26635 (d) M<35.5 & M<18.5 & A>55.5 

03 604 16236 M<35.5 & M>18.5 

02 599 11282 M>35.5 & M<49.5 

01 398 7785 M>35.5 & M>49.5 

05 06 1139 16882 M<40.5 & M<33.5 

05 923 11837 M<40.5 & M>33.5 

04 955 9321 (e) M>40.5 & M<50.5 & M<45.5 

03 1079 8063 (e) M>40.5 & M<50.5 & M>45.5 

02 243 7951 M>40.5 & M>50.5 & C<29.5 

01 1498 6317 M>40.5 & M>50.5 & C>29.5 

06 04 2221 13373 M<46.5 & M<35.5 

03 2924 10982 M<46.5 & M>35.5 

02 2486 8911 M>46.5 & M<55.5 

01 1244 6988 | M>46.5 & M>55.5 
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Table 4.3   (cont.) 
07 16 374 11861 (f) M<45.5 & M<37.5 & M<33.5 & C<13.5 

15 2330 13602 (f) M<45.5 & M<37.5 & M<33.5 Sc C>13.5 Sc   C<33.5 
14 149 10007 (f) M<45.5 & M<37.5 

& C<34.5 
& M<33.5 Sc C>13.5 Sc  C>33.5 

13 355 13135 (f) M<45.5 & M<37.5 
& C>34.5 

& M<33.5 Sc C>13.5 Sc  C>33.5 

12 2189 11885 (f) M<45.5 & M<37.5 & M>33.5 
11 1471 11603 (q) M<45.5 & M>37.5 & M<41.5 Sc C<30.5 

10 1562 10583 (q) M<45.5 & M>37.5 & M<41.5 Sc C>30.5 

09 706 10394 (h) M<45.5 & M>37.5 Sc M>41.5 Sc A<81.5 &; C<30.5 

08 1264 9284 (h) M<45.5 & M>37.5 Sc M>41.5 Sc A<81.5 & C>30.5 
07 1597 10530 (h) M<45.5 & M>37.5 Sc M>41.5 Sc A>81.5 

06 1995 9274 (i) M>45.5 & M<51.5 & C<31.5 
05 1551 8665 (i) M>45.5 & M<51.5 Sc C>31.5 Sc M<48.5 

04 1593 7919 (i) M>45.5 & M<51.5 Sc C>31.5 Sc M>48.5 

03 349 8787 (i) M>45.5 & M>51.5 Sc M<55.5 Sc C<29.5 

02 1792 7245 (i) M>45.5 & M>51.5 Sc M<55.5 Sc C>29.5 

01 1350 6380 (i) M>45.5 & M>51.5 Sc M>55.5 

08 22 1411 11237 (k) M<46.5 Sc  C<31.5 Sc M<39.5 Sc M<34.5 

21 1323 10007 (k) M<46.5 & C<31.5 Sc M<39.5 Sc M>34.5 

20 3083 8544 M<46.5 & C<31.5 Sc M>3 9.5 

19 749 8647 (1) M<46.5 & C>31.5 
& C<33.5 

Sc M<42.5 Sc A<80.5 Sc  C<34.5 

18 408 5603 (1) M<46.5 & C>31.5 
& C>33.5 & M<36 

Sc 

5 
M<42.5 Sc A<80.5 Sc  C<34.5 

17 404 7879 (1) M<46.5 & C>31.5 
& C>33.5 & M>36 

Sc 

5 
M<42.5 Sc A<80.5 Sc  C<34.5 

16 499 9576 (1) M<46.5 Sc  C>31.5 
& M<35.5 

Sc M<42.5 Sc A<80.5 Sc  C>34.5 

15 1607 7927 (1) M<46.5 & C>31.5 
Sc  M>35.5 

& M<42.5 Sc A<80.5 Sc  C>34.5 

14 1095 9100 (1) M<46.5 & C>31.5 & M<42.5 Sc A>80.5 

13 2153 6898 (1) M<46.5 & C>31.5 Sc M>42.5 Sc A<74.5 

12 2408 7518 (1) M<46.5 & C>31.5 Sc M>42.5 Sc A>74.5 

11 2674 7023 (m) M>46.5 & M<54.5 Sc C<33.5 Sc A<81.5 Sc  M<50.5 
10 2259 6400 (m) M>46.5 & M<54.5 Sc C<33.5 Sc A<81.5 & M>50.5 

09 1378 7548 (m) M>46.5 & M<54.5 Sc C<33.5 Sc A>81.5 

08 3594 6438 (m) M>46.5 Sc  M<54.5 Sc C>33.5 Sc M<49.5 Sc  A<81.5 
07 623 7274 (m) M>46.5 & M<54.5 Sc C>33.5 Sc M<49.5 Sc  A>81.5 
06 5406 5779 (m) M>46.5 & M<54.5 Sc C>33.5 Sc M>49.5 Sc  A<77.5 
05 2353 6260 (m) M>46.5 & M<54.5 Sc C>33.5 Sc M>49.5 Sc  A>77.5 
04 653 6342 (n) M>46.5 & M>54.5 Sc M<57.5 Sc C<31.5 
03 4186 5443 (n) M>46.5 & M>54.5 Sc M<57.5 Sc C>31.5 

02 3839 5162 (o) M>46.5 Sc  M>54.5 Sc M>57.5 Sc M<62.5 
01 1322 4666 (o) M>46.5 Sc  M>54.5 Sc M>57.5 Sc M>62.5 

09 06 1777 11920 M<46.5 & M<37.5 
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Table 4.3 (cont.) 

05 1202 10148 (P) M<46.5 & M>37.5 & C<30.5 

04 1713 8822 (P) M<46.5 & M>37.5 & C>30.5 
03 2905 7692 M>46.5 & M<53.5 
02 432 6857 (q) M>46.5 & M>53.5 & C<31.5 

01 1281 5722 (cr) M>46.5 & M>53.5 & C>31.5 

10 05 1495 14794 M<45.5 & M<38.5 

04 1319 12531 M<45.5 & M>38.5 

03 1465 10938 M>45.5 & M<51.5 

02 1412 9377 M>45.5 & M>51.5 & M<60.5 

01 465 7809 M>45.5 & M>51.5 & M>60.5 

11 03 217 14300 M<51.5 & M<37.5 

02 580 10711 M<51.5 & M>37.5 

01 407 7793 M>51.5 

12 06 861 12772 M<47.5 & M<38.5 

05 1403 10342 M<47.5 & M>38.5 

04 862 8920 (r) M>47.5 & M<54.5 & C<33.5 

03 781 7785 (r) M>47.5 Sc  M<54.5 & C>33.5 
02 489 7578 M>47.5 & M>54.5 & C<33.5 
01 640 6027 M>47.5 & M>54.5 & C>33.5 

13 04 397 13427 M<46.5 & M<35.5 
03 710 10097 M<46.5 & M>35.5 
02 660 8358 M>46.5 & M<53.5 

01 583 6667 M>46.5 & M>53.5 
14 04 1018 12657 M<47.5 & M<37.5 

03 2200 9887 M<47.5 & M>37.5 

02 2747 7871 M>47.5 & M<55.5 

01 2139 6298 M>47.5 & M>55.5 

15 04 629 15460 M<47.5 & M<35.5 

03 1367 11328 M<47.5 & M>35.5 

02 2461 9072 M>47.5 & M<60.5 

01 925 7662 M>47.5 & M>60.5 

16 04 958 9789 M<44.5 

03 981 7856 (s) M>44.5 & M<52.5 
02 166 8656 (s) M>44.5 & M>52.5 & A<63.5 

01 888 6323 (s) M>44.5 & M>52.5 & A>63.5 
17 03 333 15139 M<45.5 & M<32.5 

02 750 11339 M<45.5 & M>32.5 
01 596 8136 M>45.5 

18 04 87 25336 M<44.5 & M<25.5 
03 229 14516 M<44.5 & M>25.5 
02 103 9927 M>44.5 & C<32.5 
01 58 6470 M>44.5 & C>32.5 

19 03 143 25591 M<46.5 & M<30.5 
02 245 16916 M<46.5 & M>30.5 

01 224 9274 M>46.5 

20 08 1812 14415 M<44.5 & M<32.5 & A<81.5 
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Table 4.3 (cont.) 

07 854 12173 M<44.5 & M<32.5 & A>81.5 

06 2134 11861 (t) M<44.5 & M>32.5 & M<37.5 

05 4405 10530 (t) M<44.5 & M>32.5 & M>37.5 

04 4305 9145 (u) M>44.5 & M<53.5 & M<49.5 

03 3322 8259 (u) M>44.5 & M<53.5 & M>49.5 

02 3132 7347 (v) M>44.5 & M>53.5 & M<59.5 

01 1589 6400 (v) M>44.5 & M>53.5 & M>59.5 

21 02 119 17677 M<45.5 

01 94 9284 M>45.5 

Notes: M stands for the 12-component FIM motor score, C for the 
standard FIM cognitive score, and A for age.  The FRG numbers were 
assigned by CART mostly in increasing order of average cost, although 
exceptions were made to keep adjacent nodes together. 
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Table 4.4 

Recommended 95-Node FRG Models 

RIC FRG N Cost Condition 
01 14 4215 20869 M<41.5 & M<33.5 & A<81.5 & M<26.5 

13 3763 18233 M<41.5 & M<33.5 & A<81.5 & M>26.5 

12 1065 18546 M<41.5 & M<33.5 & A>81.5 & A<88.5 & M<26 .5 

11 1003 16252 M<41.5 & M<33.5 & A>81.5 & A<88.5 & M>26 .5 

10 584 14750 M<41.5 & M<33.5 & A>81.5 & A>88.5 

09 3620 15756 M<41.5 & M>33.5 & M<38.5 & A<82.5 

08 987 13739 M<41.5 & M>33.5 & M<38.5 & A>82.5 

07 3102 13616 M<41.5 & M>33.5 & M>38.5 

06 5753 11932 M>41.5 & M<52.5 & M<46.5 

05 6720 9967 M>41.5 & M<52.5 & M>46.5 

04 4131 8168 M>41.5 & M>52.5 & M<58.5 

03 551 7927 M>41.5 & M>52.5 Sc  M>58.5 & C<22.5 

02 1596 6400 M>41.5 & M>52.5 & M>58.5 & C>22.5 & M<68 5 

01 250 5064 M>41.5 & M>52.5 & M>58.5 & C>22.5 & M>68 5 

02 05 428 19149 M<39.5 & M<29.5 

04 400 14101 M<39.5 & M>29.5 

03 602 11522 M>39.5 & C<23.5 
02 303 9858 M>39.5 & C>23.5 Sc  M<51.5 
01 320 7137 M>39.5 & C>23.5 Ec  M>51.5 

03 04 442 20333 M<40.5 & M<24.5 

03 1099 14429 M<40.5 &  M>24.5 
02 1164 10754 M>40.5 & M<50.5 

01 1053 8168 M>40.5 & M>50.5 

04 04 282 21248 M<35.5 & M<18.5 

03 604 16236 M<35.5 Sc  M>18.5 
02 599 11282 M>35.5 & M<49.5 

01 398 7785 M>35.5 & M>49.5 

05 05 1139 16882 M<40.5 & M<33.5 

04 923 11837 M<40.5 & M>33.5 

03 2034 8630 M>40.5 & M<50.5 
02 243 7951 M>40.5 & M>50.5 & C<29.5 

01 1498 6317 M>40.5 & M>50.5 & C>29.5 

06 04 2221 13373 M<46.5 & M<35.5 
03 2924 10982 M<46.5 & M>35.5 
02 2486 8911 M>46.5 & M<55.5 

01 1244 6988 M>46.5 & M>55.5 
07 05 5397 12620 M<45.5 & M<37.5 

04 3033 11059 M<45.5 & M>37.5 & M<41.5 

03 3567 10047 M<45.5 & M>37.5 Sc  M>41.5 
02 5139 8656 M>45.5 & M<51.5 

01 3491 7030 M>45.5 & M>51.5 

08 06 2734 10625 M<46.5 & C<31.5 Sc  M<39.5 
05 3083 8544 M<46.5 & C<31.5 Sc  M>39.5 
04 9323 7708 M<46.5 & C>31.5 
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03 18287 6393 M>46.5 & M<54.5 
02 4839 5552 M>46.5 & M>54.5 & M<57 .5 

01 5161 5029 M>46.5 & M>54.5 & M>57 .5 
09 04 1777 11920 M<46.5 & M<37.5 

03 2915 9339 M<46.5 & M>37.5 
02 2905 7692 M>46.5 Sc  M<53.5 
01 1713 5991 M>46.5 & M>53.5 

10 05 1495 14794 M<45.5 & M<38.5 
04 1319 12531 M<45.5 & M>38.5 
03 1465 10938 M>45.5 & M<51.5 
02 1412 9377 M>45.5 & M>51.5 & M<60 .5 
01 465 7809 M>45.5 & M>51.5 & M>60 .5 

11 03 217 14300 M<51.5 & M<37.5 
02 580 10711 M<51.5 & M>37.5 
01 407 7793 M>51.5 

12 05 861 12772 M<47.5 & M<38.5 
04 1403 10342 M<47.5 & M>38.5 
03 1643 8358 M>47.5 & M<54.5 
02 489 7578 M>47.5 Sc  M>54.5 & C<33 5 
01 640 6027 M>47.5 & M>54.5 & C>33 5 

13 04 397 13427 M<46.5 & M<35.5 
03 710 10097 M<46.5 & M>35.5 
02 660 8358 M>46.5 & M<53.5 
01 583 6667 M>46.5 & M>53.5 

14 04 1018 12657 M<47.5 & M<37.5 
03 2200 9887 M<47.5 & M>37.5 
02 2747 7871 M>47.5 & M<55.5 
01 2139 6298 M>47.5 & M>55.5 

15 04 629 15460 M<47.5 & M<35.5 
03 1367 11328 M<47.5 & M>35.5 
02 2461 9072 M>47.5 & M<60.5 
01 925 7662 M>47.5 & M>60.5 

16 02 958 9789 M<44.5 
01 2035 7201 M>44.5 

17 03 333 15139 M<45.5 & M<32.5 
02 750 11339 M<45.5 & M>32.5 
01 596 8136 M>45.5 

18 04 87 25336 M<44.5 & M<25.5 
03 229 14516 M<44.5 & M>25.5 
02 103 9927 M>44.5 & C<32.5 
01 58 6470 M>44.5 & C>32.5 

19 03 143 25591 M<46.5 & M<30.5 
02 245 16916 M<46.5 & M>30.5 
01 224 9274 M>46.5 

20 05 1812 14415 M<44.5 & M<32.5 & A<81. 5 
04 854 12173 M<44.5 & M<32.5 & A>81. 5 
03 6539 10949 M<44.5 & M>32.5 
02 7627 8752 M>44.5 Sc  M<53.5 
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01 4721 7016 M>44.5 & M>53.5 

21 02 119 17677 M<45.5 

01 94 9284 M>45.5 

Notes: M stands for the 12-component FIM motor score, C for the 
standard FIM cognitive score, and A for age.  The FRG numbers were 
assigned by CART mostly in increasing order of average cost, although 
exceptions were made to keep adjacent nodes together. 

The final trees differ in some respects from the trees produced in 

the interim report.  This is not surprising--CART is trying to fit step 

functions to continuous curves, so the cut-points are imprecisely 

determined.  We think the important question is not whether the trees 

are identical but instead whether the tree models produce a consistent 

and accurate set of predictions.  For now, we simply ask if one used the 

current FRGs and associated predictions, how different are these 

predictions over the different years? 

The attached plots demonstrate that this set of FRG models fits the 

data pretty well in all years.  They show the predicted means within 

FRGs; predictions are normalized to have the same mean as actual log- 

cost across all RICs.  Except for the RICs that were pooled, the 1999 

predicted means fall right on top of the log cost averages (rightmost 

panels).  As you move to the left, you see the models projected 

backwards in time.  The predictions for 1998 look quite good.  They are 

a little worse for 1997, and a little worse still for 1996. 

An upcoming part of the project will consider how much of a 

difference we will need to conclude that the models need to be refit, 

and how this refit might occur.  We will gain some insight into the 

performance of various algorithms such as adjusting cut-points, 

splitting FRGs, combining FRGs, or completely refitting the CART models 

by using these plots to identify anomalous patterns and seeing what it 

takes to eliminate them.  We are already thinking of making some 

adjustments to standardize on age group splits.  For example, RIC 01 

uses age<81.5 in some places, A<82.5 in others: we would like the TEP's 

opinion on the importance of uniformity in age cut-points. 
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Figure 4.1—Actual and Predicted FRG Means: RIC=01, Fityear=99 
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Figure 4.2—Actual and Predicted FRG Means: RIC=02, Fityear=99 
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Figure 4.3—Actual and Predicted FRG Means: RIC=03, Fityear=99 

8 

FRG 

Figure 4.4—Actual and Predicted FRG Means: RIC=04, Fityear=98,99 
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Figure 4.6—Actual and Predicted FRG Means: RIC=06, Fityear=99 
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Figure 4.7—Actual and Predicted FRG Means: RIC=07, Fityear=99 
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Figure 4.8—Actual and Predicted FRG Means: RIC=08, Fityear=99 
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Figure 4.9—Actual and Predicted FRG Means: RIC=09, Fityear=99 
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Figure 4.10—Actual and Predicted FRG Means: RIC=10, Fityear=99 
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Figure 4.11—Actual and Predicted FRG Means: RIC=11, Fityear=99 
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Figure 4.12—Actual and Predicted FRG Means: RIC=12, Fityear=99 
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Figure 4.13—Actual and Predicted FRG Means: RIC=13, Fityear=99 
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Figure 4.14—Actual and Predicted FRG Means: RIC=14, Fityear=99 
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Figure 4.15—Actual and Predicted FRG Means: RIC=15, Fityear=99 
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Figure 4.16—Actual and Predicted FRG Means: RIC=16, Fityear=99 
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Figure 4.17—Actual and Predicted FRG Means: RIC=17, Fityear=99 
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Figure 4.18—Actual and Predicted FRG Means: RIC=18, Fityear=98,99 
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Figure 4.19—Actual and Predicted FRG Means: RIC=19, Fityear=98,99 
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Figure 4.20—Actual and Predicted FRG Means: RIC=2 0, Fityear=99 
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Figure 4.21—Actual and Predicted FRG Means: RIC=21, Fityear=98,99 



63 

REFERENCES 

Breiman, L. J., M. Friedman, R. A. Olshen, and C. J. Stone (1984). 
Classification and Regression  Trees.     Belmont, CA: Wandsworth, Inc. 

Carter, Grace M., Daniel A. Relies, and Barbara 0. Wynn (January 2000). 
Workplan for an Inpatient Rehabilitation Prospective Payment  System. 
Santa Monica, CA: RAND, DRU-2161-1-HCFA. 

Carter, Grace M., Daniel A. Relies, Barbara O. Wynn, Jennifer Kawata, 
Susan M. Paddock, Neeraj Sood, and Mark E. Totten (July 2000). 
Interim Report  on an  Inpatient Rehabilitation Facility Prospective 
Payment  System.     Santa Monica, CA:  RAND, DRU-2309-HCFA. 

Friedman, J. H., T. Hastie, and R. J. Tibshirani (April 2000).  Additive 
Logisitc Regression: A Statistical View of Boosting. Annals of 
Statistics,   Vol.   28,   No.   2,   pp. 337-407. 

Hastie, T. and R. J. Tibshirani (1990). Generalized Additive Models. 
London: Chapman and Hall. 

Stineman, M. G., A. J. Jette, R. C. Fiedler, and C. V. Granger (June 
1997a).  Impairment-Specific Dimensions Within the Functional 
Independence Measure. Archives of Physical Medical  Rehabilitation, 
Vol.    78,   pp. 636-643. 

Stineman, M. G., C. J. Tassoni, J. J. Escarce, J. E. Goin, C. V. 
Granger, R. C. Fiedler, and S. V. Williams (October 1997b). 
Development of Function-Related Groups, Version 2.0: A Classification 
System for Medical Rehabilitation. Health Services Research,   Vol.   32, 
No.   4,   pp. 529-548. 

Uniform Data System for Medical Rehabilitation (UDSmr) (1997).  Guide 
for the  Uniform Data  Set  for Medical  Rehabilitation,   Version 5.1. 
Buffalo, NY: UDSmr. 


